
COMP2111 Assignment 1 2020 Term 1

Due: Thu, 19th March, 12:00 noon

Submission is through give and should be a single pdf file, maximum size 4Mb. Prose should be typed, not
handwritten. Use of LATEX is encouraged, but not required. See the course website for detailed submission
instructions.

Discussion of assignment material with others is permitted, but the work submitted must be your own in
line with the University’s plagiarism policy.

Problem 1 (20 marks)
Recall the relation composition operator ; defined as:

R1; R2 = {(a, c) | there is a b with (a, b) ∈ R1 and (b, c) ∈ R2}

For any set S, and any binary relations R1, R2, R3 ⊆ S× S, prove or give a counterexample to disprove the
following:

(a) (R1; R2); R3 = R1; (R2; R3) (4 marks)

(b) I; R1 = R1; I = R1 where I = {(x, x) | x ∈ S} (4 marks)

(c) (R1; R2)
← = R←1 ; R←2 (4 marks)

(d) (R1 ∪ R2); R3 = (R1; R3) ∪ (R2; R3) (4 marks)

(e) R1; (R2 ∩ R3) = (R1; R2) ∩ (R1; R3) (4 marks)
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Solution

(a) We have:

(a, d) ∈ (R1; R2); R3 iff there exists c ∈ S such that (a, c) ∈ R1; R2 and (c, d) ∈ R3
iff there exists b, c ∈ S such that (a, b) ∈ R1 and (b, c) ∈ R2 and (c, d) ∈ R3
iff there exists b ∈ S such that (a, b) ∈ R1 and (b, d) ∈ R2; R3
iff (a, d) ∈ R1; (R2; R3)

(b) Suppose (a, b) ∈ R. Then, because (a, a) ∈ I we have (a, b) ∈ I; R. Also, because (b, b) ∈ I we
have (a, b) ∈ R; I.

Now suppose (a, b) ∈ I; R. Then there exists c ∈ S such that (a, c) ∈ I and (c, b) ∈ R. But from
the definition of I, the only such c is c = a, so (a, b) ∈ R.

Finally suppose (a, b) ∈ R; I. Then there exists c ∈ S such that (a, c) ∈ R and (c, b) ∈ I. Again,
from the definition of I, the only such c is c = b, so (a, b) ∈ R.

(c) This is not correct. Consider S = {a, b, c}, R1 = {(a, b)} and R2 = {(b, c)}. Then,

R1; R2 = {(a, c)} (R1; R2)
← = {(c, b)}

R←1 = {(b, a)} R←2 = {(b, c)} R←1 ; R←2 = ∅

It is in fact possible to show that (R1; R2)
← = R←2 ; R←1 .

(d) We have:

(a, c) ∈ (R1 ∪ R2); R3 iff there exists b ∈ S such that (a, b) ∈ R1 ∪ R2 and (b, c) ∈ R3
iff there exists b ∈ S such that (a, b) ∈ R1 and (b, c) ∈ R3, or

there exists b ∈ S such that (a, b) ∈ R2 and (b, c) ∈ R3
iff (a, c) ∈ R1; R3 or (a, c) ∈ R2; R3
iff (a, c) ∈ R1; R3 ∪ R2; R3

(e) This is not correct. Consider S = {a, b, c, d} with R1 = {(a, b), (a, c)}, R2 = {(b, d)}, and
R3 = {(c, d)}. Then

R2 ∩ R3 = ∅ R1; (R2 ∩ R3) = ∅
R1; R2 = {(a, d)} R1; R3 = {(a, d)} R1; R2 ∩ R1; R3 = {(a, d)}

Problem 2 (30 marks)
Let R ⊆ S× S be any binary relation on a set S. Consider the sequence of relations R0, R1, R2, . . ., defined
as follows:

R0 := I = {(x, x) | x ∈ S}, and

Ri+1 := Ri ∪ (R; Ri) for i ≥ 0

(a) Prove that if there is an i such that Ri = Ri+1, then Rj = Ri for all j ≥ i. (4 marks)

(b) Prove that if there is an i such that Ri = Ri+1, then Rk ⊆ Ri for all k ≥ 0. (4 marks)

(c) Let P(n) be the proposition that for all m ∈N: Rn; Rm = Rn+m. Prove that P(n) holds for all n ∈N.
(8 marks)
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(d) If |S| = k, explain why Rk = Rk+1. (Hint: Show that if (a, b) ∈ Rk+1 then (a, b) ∈ Ri for some i < k + 1.)
(4 marks)

(e) If |S| = k, show that Rk is transitive. (4 marks)

(f) If |S| = k, show that (R ∪ R←)k is an equivalence relation. (6 marks)

Solution

(a) Suppose Ri = Ri+1. Let P(j) be the proposition that Rj = Ri. We will prove that P(j) holds for
all j ≥ i.

Base case j = i: Clearly P(i) holds as Ri = Ri.

Inductive case. Suppose P(j) holds, that is, Rj = Ri for some j ≥ i. We will show that P(j+ 1)
holds. We have:

Rj+1 = Rj ∪ (R; Rj) (Definition)
= Ri ∪ (R; Ri) (IH)
= Ri+1 (Definition)
= Ri (Given)

So P(j) implies P(j + 1). So by the principle of mathematical induction, P(j) holds for all j ≥ i.

(b) We first show that if k ≤ j then Rk ⊆ Rj. We prove this (for any k) by induction on j:

Base case j = k: Clearly Rk ⊆ Rk.

Inductive case: Suppose j ≥ k and Rk ⊆ Rj. Then

Rk ⊆ Rj ⊆ Rj ∪ (R; Rj) = Rj+1.

Therefore, by the principle of induction, for all k, j, if k ≤ j then Rk ⊆ Rj.

It follows that if Ri = Ri+1 then for k ≤ i we have Rk ⊆ Ri, and for k ≥ i we have (from (a))
that Rk = Ri ⊆ Ri.
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Solution (ctd)

(c) We will prove P(n) holds for all n ∈N by induction on n.

Base case n = 0: For all m,

R0+m = Rm

= I; Rm (From Q1(b))
= R0; Rm (Def. of R0)

Inductive case. Suppose P(n) holds, that is, for all m, Rn; Rm = Rn+m. We have, for all m:

Rn+1; Rm = ((Rn ∪ (R; Rn)); Rm (Definition)
= (Rn; Rm) ∪ ((R; Rn); Rm) (From Q1(d))
= (Rn; Rm) ∪ (R; (Rn; Rm)) (From Q1(a))
= Rn+m ∪ (R; Rn+m) (IH)
= Rn+m+1 (Definition)
= R(n+1)+m

So P(n + 1) holds. Therefore, by the principle of mathematical induction, P(n) holds for all
n ∈N.

(d) From (b) we have that Rk ⊆ Rk+1. We will show that Rk+1 ⊆ Rk.

We observe that (a, b) ∈ Rj if and only if there exists c0, . . . , cp ∈ S, with p ≤ j, a = c0, b = cp
and (ci, ci+1) ∈ R for all i ∈ [0, p].

Therefore, if (a, b) ∈ Rk+1 then either p ≤ k, in which case (a, b) ∈ Rp ⊆ Rk; or p = k + 1. In
the latter case, if |S| = k then there must exist q, r ∈ [0, p] with q < r and cq = cr. But then the
we have c0, c1, . . . cq, cr+1, cr+2, . . . cp as a sequence of p− (r− q) < k + 1 elements of S meeting
the above observation. Therefore (a, b) ∈ Rp−(r−q) ⊆ Rk.

(e) From (d) we have that if |S| = k then Rk = Rk+1. Now suppose (a, b) ∈ Rk and (b, c) ∈ Rk.
Then

(a, c) ∈ Rk; Rk (Definition of ;)
= R2k (From (c))
= Rk (From (a))

So Rk is transitive.

(f) We need to show that (R ∪ R←)k is reflexive, symmetric and transitive.

• From (b), we have that I = (R ∪ R←)0 ⊆ (R ∪ R←)k, so for all a ∈ S we have that
(a, a) ∈ (R ∪ R←)k. Therefore (R ∪ R←)k is reflexive.

• From (e) we have that (R ∪ R←)k is transitive.

• Suppose (a, b) ∈ (R ∪ R←)k. Following the observation in (d) we have that there exists
c0, . . . , cp ∈ S, with p ≤ k, a = c0, b = cp and (ci, ci+1) ∈ R ∪ R← for all i ∈ [0, p]. But
if (ci, ci+1) ∈ R ∪ R← then (ci+1, ci) ∈ R ∪ R←. Therefore, there exists cp, cp−1, . . . , c0 with
p ≤ k, a = c0, b = cp and (ci+1, ci) ∈ R ∪ R← for all i ∈ [0, p], so (b, a) ∈ (R ∪ R←)k.
Therefore (R ∪ R←)k is symmetric.
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Problem 3 (22 marks)
Let PF denote the set of well-formed propositional formulae made up of propositional variables, >, ⊥,
and the connectives ¬, ∧, and ∨.

We define the function dual(ϕ) from PF to PF, which swaps ∧ and ∨, as well as > with ⊥. We also define
flip(ϕ) from PF to PF, which negates any propositional variables in the formula:

dual(p) = p
dual(>) = ⊥
dual(⊥) = >
dual(¬ϕ) = ¬dual(ϕ)
dual(ϕ ∧ ψ) = dual(ϕ) ∨ dual(ψ)
dual(ϕ ∨ ψ) = dual(ϕ) ∧ dual(ψ)

flip(p) = ¬p
flip(>) = >
flip(⊥) = ⊥
flip(¬ϕ) = ¬flip(ϕ)
flip(ϕ ∧ ψ) = flip(ϕ) ∧ flip(ψ)
flip(ϕ ∨ ψ) = flip(ϕ) ∨ flip(ψ)

(a) For the formula ϕ = p ∨ (q ∧ ¬r):

(i) What is dual(ϕ)? (4 marks)

(ii) What is flip(ϕ)? (4 marks)

Solution

(i)

dual(ϕ) = dual(p ∨ (q ∧ ¬r))

= dual(p) ∧ dual(q ∧ ¬r)

= p ∧ (dual(q) ∨ dual(¬r))

= p ∧ (q ∨ ¬dual(r))
= p ∧ (q ∨ ¬r).

(ii)

flip(ϕ) = flip(p ∨ (q ∧ ¬r))

= flip(p) ∨ flip(q ∧ ¬r)

= ¬p ∨ (flip(q) ∧ flip(¬r))

= ¬p ∨ (¬q ∧ ¬flip(r))
= ¬p ∨ (¬q ∧ ¬¬r).

(Note that it is ¬¬r, not r.)

(b) Prove that for all ϕ ∈ PF: flip(ϕ) is logically equivalent to ¬dual(ϕ). (14 marks)
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Solution

Let P(ϕ) be the proposition that dual(ϕ) ≡ ¬flip(ϕ). We will show that P(ϕ) holds for all ϕ ∈ PF
by structural induction.

Base case (>): dual(>) = ⊥ ≡ ¬> = ¬flip(>). So P(>) holds.

Base case (⊥): dual(⊥) = > ≡ ¬⊥ = ¬flip(⊥). So P(⊥) holds.

Base case (p): For any propositional variable p we have

dual(p) = p ≡ ¬¬p = ¬flip(p).

So P(p) holds.

Inductive case (¬ϕ): Suppose P(ϕ) holds, that is dual(ϕ) ≡ ¬flip(ϕ). Then

dual(¬ϕ) = ¬dual(ϕ) (Definition of dual)

≡ ¬(¬flipx(ϕ)) (IH)

= ¬flip(¬ϕ) (Definition of flip)

So P(¬ϕ) holds.

Inductive case (ϕ ∧ ψ): Suppose P(ϕ) and P(ψ) hold. That is, dual(ϕ) ≡ ¬flip(ϕ) and dual(ψ) ≡
¬flip(ψ). Then

dual(ϕ ∧ ψ) = dual(ϕ) ∨ dual(ψ) (Definition of dual)

≡ (¬flip(ϕ)) ∨ (¬flip(ψ)) (IH)

≡ ¬(flip(ϕ) ∧ flip(ψ)) (De Morgan’s law)

= ¬flip(ϕ ∧ ψ). (Definition of flip)

So P(ϕ ∧ ψ) holds.

Inductive case (ϕ ∨ ψ): Suppose P(ϕ) and P(ψ) hold. That is, dual(ϕ) ≡ ¬flip(ϕ) and dual(ψ) ≡
¬flip(ψ). Then

dual(ϕ ∨ ψ) = dual(ϕ) ∧ dual(ψ) (Definition of dual)

≡ (¬flip(ϕ)) ∧ (¬flip(ψ)) (IH)

≡ ¬(flip(ϕ) ∨ flip(ψ)) (De Morgan’s law)

= ¬flip(ϕ ∨ ψ). (Definition of flip)

So P(ϕ ∨ ψ) holds.

By the principle of induction, P(ϕ) holds for all ϕ ∈ PF.

Problem 4 (28 marks)
Four wifi networks, Alpha, Bravo, Charlie and Delta, all exist within close proximity to one another as
shown below.
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Alpha Bravo Charlie Delta

Networks connected with an edge in the diagram above can interfere with each other. To avoid interference
networks can operate on one of two channels, hi and lo. Networks operating on different channels will not
interfere; and neither will networks that are not connected with an edge.

Our goal is to determine (algorithmically) whether there is an assignment of channels to networks so
that there is no interference. To do this we will transform the problem into a problem of determining if a
propositional formula can be satisfied.

(a) Carefully defining the propositional variables you are using, (4 marks)
write propositional formulae for each of the following requirements:

(i) ϕ1: Alpha uses channel hi or channel lo; and so does Bravo, Charlie and Delta. (4 marks)

(ii) ϕ2: Alpha does not use both channel hi and lo; and the same for Bravo, Charlie and Delta.(4 marks)

(iii) ϕ3: Alpha and Bravo do not use the same channel; and the same applies for all other pairs of
networks connected with an edge. (4 marks)

(b) (i) Show that ϕ1 ∧ ϕ2 ∧ ϕ3 is satisfiable; so the requirements can all be met. Note that it is sufficient
to give a satisfying truth assignment, you do not have to list all possible combinations. (6 marks)

(ii) Based on your answer to the previous question, which channels should each network use in order
to avoid interference? (6 marks)
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Solution

Let
Variable Represent the proposition that: Variable Represent the proposition that:

Ah Alpha uses channel hi Al Alpha uses channel lo
Bh Bravo uses channel hi Bl Bravo uses channel lo
Ch Charlie uses channel hi Cl Charlie uses channel lo
Dh Delta uses channel hi Dl Delta uses channel lo

(a) Then we can define the requirements as follows:

(i) ϕ1 = (Ah ∨ Al) ∧ (Bh ∨ Bl) ∧ (Ch ∨ Cl) ∧ (Dh ∨ Dl).

(ii) ϕ2 = ¬(Ah ∧ Al) ∧ ¬(Bh ∧ Bl) ∧ ¬(Ch ∧ Cl) ∧ ¬(Dh ∧ Dl).

(iii) ϕ3 = ¬((Ah ∧ Bh) ∨ (Al ∧ Bl)) ∧ ¬((Bh ∧ Ch) ∨ (Bl ∧ Cl)) ∧ ¬((Ch ∧ Dh) ∨ (Cl ∧ Dl)).

(b) (i) One truth assignment could be defined as:

v(Ah) = v(Bl) = v(Ch) = v(Dl) = true
v(Al) = v(Bh) = v(Cl) = v(Dh) = false

Under this assignment we see that v(ϕ1) = v(ϕ2) = v(ϕ3) = true, so v(ϕ1 ∧ ϕ2 ∧ ϕ3) =
true and hence the requirements can all be met.

(ii) In general, if the truth assignment sets Ah to true then the proposed solution is that Alpha
uses channel hi and if the truth assignment sets Al to true then the proposed solution is
that Alpha uses channel lo (and similarly for Bravo, Charlie, and Delta). Note that ϕ2
ensures that in any satisfying assignment at most one of Ah or Al will be set to true (and
likewise for the other variables), so Alpha will never be assigned to two channels; and ϕ1
ensures that in any satisfying assignment at least one of Ah or Al will be set to true, so
Alpha will be assigned at least one channel.
In our particular example, the proposed solution is: Alpha and Charlie use channel hi;
Bravo and Delta use channel lo.
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